Nikita Kirnosov

3201 E. Fort Lowell Rd., #3021

Tucson, AZ 85716

Cell: (520)247-6636

E-mail: kirnosov@email.arizona.edu

www.linkedin.com/in/kirnosov

Education

Ph.D. Physics - University of Arizona, Tucson, AZ - 2015

M.S. Physics - University of Arizona, Tucson, AZ - 2012

B.S. (Hons) Physics - Saratov State University, Russia - 2010

Online classes: Coursera

Skills

Programming

Programming languages: Fortran, C, CUDA, Root, C++

Scripting languages: R, (i)Python, MATLAB, Java, Ruby

Markup languages: LaTeX, HTML, Markdown

Computational software: Wolfram Mathematica, Gaussian, Mathcad

Operating systems: MacOS, Unix, Windows

API: MPI, OpenMP, OpenACC, OpenCL

Experimental

Arduino boards and language

UV-Vis and IR spectroscopy

LabView programming

Work Experience

2015 Insight Data Fellow

2012 – present *Teaching Assistant*

Dept. of Chemistry and Biochemistry, University of Arizona,

Tucson, AZ

Physical Chemistry Lab, General Chemistry (Lab and Lecture)

2012 – 2015 Graduate mentor, Curriculum developer

NSF Research Experience for Undergraduates, Dept. of

Physics, University of Arizona, Tucson, AZ

2010 – 2012 Teaching Assistant

Dept. of Physics, University of Arizona, Tucson, AZ

E&M, Classical mechanics Labs

2009 (Jan-Aug) Intern

Joint Institute of Nuclear Research, Dubna, Russia

Muon detector programming

Other projects

Github: https://github.com/kirnosov

Grade Analysis Software: https://kirnosov.shinyapps.io/LecLab

Weather Prediction App: https://kirnosov.shinyapps.io/Ask_Local

Predictive Text Model App: https://kirnosov.shinyapps.io/Word Suggest

Volunteer Experience

2015 – present Automatization Software Developer

Dept. of Chemistry, University of Arizona, Tucson, AZ

2015 – present *Committee member*

CHEM 152 Lab Advisory Committee, Dept. of Chemistry,

University of Arizona, Tucson, AZ

2012 - Present Outreach team member and coordinator

NSF Research Experience for Undergraduates, Dept. of

Physics, University of Arizona, Tucson, AZ

2011 – present Executive board member

International friends of Tucson, Tucson, AZ

2014, 2015 Travel grant judge

Graduate and Professional Student Council, University of

Arizona, Tucson, AZ

2012 – 2013 *PR manager*

MotoPeople: MotoWomen Around the World Tour, Russia

Awards

2015	Insight Data Fellowship
2014, 2015	University of Arizona Department of Physics FanFare Award
2014, 2015	University of Arizona College of Science Scholarship
2011	University of Arizona Dept. of Physics Encouragement Award
2009. 2008. 2007	Potanin Fund Award

Talks & Presentations

2015 (Mar)	APS March Meeting, San Antonio, TX
2014 (Aug)	XXVI IUPAP Conference on Computational Physics, Boston, MA
2014 (Jul)	The American Conference on Theoretical Chemistry, Telluride,
	СО
2014 (Mar)	APS March Meeting, Denver, CO
2013 (Oct)	APS Four Corners Section Meeting, Denver, CO
2013 (Sep)	Dept. of Chemistry and Biochemistry Seminar

2013 (Apr) Dept. of Chemistry and Biochemistry Seminar

2011 (Oct) APS Four Corners Section Meeting, Tucson, AZ

Hobbies & Interests

Judo (amateur competitive level)

3D printing

Hiking & Backpacking

Publications

Direct non-Born-Oppenheimer variational calculations of all bound vibrational states corresponding to the first rotational excitation of D2 performed with explicitly correlated all-particle Gaussian functions.

K.L. Sharkey; N.Kirnosov; L. Adamowicz. JOURNAL OF CHEMICAL PHYSICS Volume: 142 Article Number: 174307, Published: MAY 7 2015

Para—ortho isomerization of H_2^+ . Non-Born—Oppenheimer direct variational calculations with explicitly correlated all-particle Gaussian functions N.Kirnosov; K.L. Sharkey; L. Adamowicz.

CHEMICAL PHYSICS LETTERS Volume: 621, Pages 134-140, Published: FEB 4 2015

A comparison of two types of explicitly correlated Gaussian functions for non-Born-Oppenheimer molecular calculations using a model potential M. Formanek, K. L. Sharkey, N. Kirnosov and L. Adamowicz JOURNAL OF CHEMICAL PHYSICS Volume: 141 Article Number: 54103 Published online: OCT 15 2014

Charge asymmetry in the rovibrationally excited HD molecule N.Kirnosov; K.L. Sharkey; L. Adamowicz.

JOURNAL OF CHEMICAL PHYSICS Volume: 140 Issue: 10 Article Number: 104115

Published online: MAR 13 2014

Lifetimes of rovibrational levels of HD+

N.Kirnosov; K.L. Sharkey; L. Adamowicz.

PHYSICAL REVIEW A Volume: 89 Issue: 1 Article Number: 012513 Published: JAN

27 2014

Charge asymmetry in rovibrationally excited HD+ determined using explicitly correlated all-particle Gaussian functions

N.Kirnosov; K.L. Sharkey; L. Adamowicz. JOURNAL OF CHEMICAL PHYSICS Volume: 139 Issue: 20 Article Number: 204105 Published: NOV 28 2013

An algorithm for non-Born-Oppenheimer quantum mechanical variational calculations of N=1 rotationally excited states of diatomic molecules using all-particle explicitly correlated Gaussian functions

K.L. Sharkey; N.Kirnosov; L. Adamowicz. JOURNAL OF CHEMICAL PHYSICS Volume: 139 Issue: 16 Article Number: 164119 Published: OCT 28 2013

Non-Born-Oppenheimer method for direct variational calculations of diatomic first excited rotational states using explicitly correlated all-particle Gaussian functions

K.L. Sharkey; N.Kirnosov; L. Adamowicz. PHYSICAL REVIEW A Volume: 88 Issue: 3 Article Number: 032513 Published: SEP 20 2013

Analytical energy gradient used in variational Born-Oppenheimer calculations with all-electron explicitly correlated Gaussian functions for molecules containing pi electrons.

W.-C. Tung; M. Pavanello; K.L. Sharkey; N.Kirnosov; L. Adamowicz. JOURNAL OF CHEMICAL PHYSICS Volume: 138 Issue: 12 Article Number: 124101 Published: MAR 28 2013

An algorithm for quantum mechanical finite-nuclear-mass variational calculations of atoms with L=3 using all-electron explicitly correlated Gaussian basis functions K.L. Sharkey; N.Kirnosov; L. Adamowicz. JOURNAL OF CHEMICAL PHYSICS Volume: 138 Issue: 10 Article Number: 104107 Published: MAR 14 2013